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Abstract: The proliferation of glyphosate-based herbicides is becoming a global menace due
to their economic viability, thereby resulting in their indiscriminate usage among the
consumers. Consequently, there is an increase in the occurrence of these herbicides in aquatic
bodies, posing a threat to aquatic life. The present study sought to investigate the variations in
toxicities of glyphosate-based herbicides in African catfish (Clarias gariepinus). Evaluation
of the response of Clarias gariepinus juveniles when exposed to glyphosate-based herbicides,
namely Round Up (RU) and Force Up (FU), during a range study, which was between 0.0
and 5000 mg/L in thousand doses, was carried out for 96 h. Thereafter, fish were exposed to
lower concentrations of RU and higher concentrations of FU. Additionally, the effects of
glyphosate-based herbicides were evaluated in surviving catfish for biochemical indices
(enzymatic and redox status). At the expiration of the exposure period, there was total
mortality of fish in the group treated with RU, while zero mortality was observed in the FU-
treated group. As a result, RU concentration was downscaled to 0.0-200 mg/L in arithmetic
progression, while FU was increased to 4800—-5800 mg/L. Round Up was observed to have
more toxicological effect on the biochemical indices investigated namely; lipid peroxidation,
1, 1-diphenyl-2 picrylhydrazyl (DPPH) radical scavenging property, ferric radical-reducing
antioxidant property (FRAP), glutathione (y-glutamylcysteinyl glycine (GSH)) levels, and the
modulation of activities of redox-sensitive enzymes in the cerebral tissues of exposed catfish
than observed with Force Up. Therefore, the variation in toxicological effects of these
glyphosate herbicide products confers more or less toxicity on the environment, and this may
be a function of the composition of surfactants included in their individual formulations.

Keywords: Clarias gariepinus; force up; glyphosate herbicides; mortality; round up;
surfactant

1. Introduction

Glyphosate is one of the most common and important organophosphorus
herbicides developed for use around the world [1] and has been described as an
herbicide of broad-spectrum activity with low cost in ecological restoration programs
due to its genetic modifications [2,3]. It has the IUPAC name N-(phosphonomethyl)-
glycine and is a non-selective, post-emergent systemic herbicide whose herbicidal
activity is expressed through direct contact with the leaves and subsequent
translocation throughout the plant. Moreover, the effectiveness of glyphosate has led to
its emergence as a major active ingredient in several commercial herbicide
formulations and hence a proliferation of its occurrence in aquatic environments [4,5].

Furthermore, glyphosate was previously reported to be environmentally friendly
and less toxic [6—8] but it now poses a threat to aquatic biota and other living
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organisms in the surrounding area due to its longtime accumulation and existence in
the environs prior to decomposition [9]. Also, it significantly altered metabolic,
oxidative, and hematological parameters in non-target organisms [10-14]. Alarape et
al. [15] reported genotoxicity, hepatoxicity and nephrotoxicity effects on the Clarias
gariepinus exposed to glyphosate herbicide at sublethal doses, with even more
adverse effects at increased concentrations. However, every herbicide contains
ingredients other than the active ingredients called surfactants which are required at
possibly higher concentrations than necessary for maximum reduction of the spray
solution surface tension. This indicates that their mode of action is not limited to
increasing the spreading characteristics of the spray droplets [16] but is also involved
in increasing permeability of the cuticle, plasma membrane, or both in increasing
foliar uptake of glyphosate and promoting phytotoxicity [17]. Such surfactants may
be more toxic than glyphosate alone and may synergistically increase glyphosate
toxicity, as reports have suggested that the presence of multiple toxicants generally
results in greater toxicity than any of the individual components [18-20]. The
formulations and surfactants like polyoxyethylene amine (POEA) have been
discovered to be highly toxic and consequently responsible for the relatively high
toxicity of formulated glyphosate to several freshwater invertebrates and fishes.

However, due to the emergence of different brands of glyphosate, there are
variations in their toxicity and behavioral response to organisms. Shiogiri et al. [21]
reported that the LCso values when Cyprinus carpio and Palloceros caudimaculatus
were exposed to glyphosate commercial formulation (Rodeo) herbicides are 620
mg/L and 975 mg/L for 96 h, respectively. Also, 211.80 mg/L and 32 mg/L were
obtained by Nwani et al. [22] as LCso for Force Up and Round Up, respectively, on
exposure of Tilapia zillii and Clarias gariepinus. Additionally, Awoke et al. [14]
reported 44.67 mg/L as the LCso value for 96 h exposure of glyphosate commercial
formulation (Mulsate) to Clarias gariepinus. The observation of significant
differences in the toxicities of different brands of glyphosate herbicides in non-target
organisms, as highlighted above, suggests the possibility that the active ingredient,
glyphosate, is not the sole toxic agent present in these formulations. It is also
possible that glyphosate interacts in varied dimensions with other constituents,
impacting the availability of reactive functional groups or possibly eliciting more
reactive functional groups. Essentially, the differential toxicity of different
glyphosate brands is likely a function of the chemical nature of other constituents
present in individual commercial formulations. Hence, this study was carried out
with the aim of providing more information on the chemical basis for the disparity in
the toxicities of commercial glyphosate formulations and to underscore the possible
involvement of surfactants in RU- and FU-mediated toxicity on the cerebral tissue of
African catfish (Clarias gariepinus).

2. Materials and methods

2.1. Chemicals

Round Up and Force Up brands of glyphosate herbicide were obtained at Oba’s
market, Akure, Nigeria, thiobarbituric acid (TBA), and adenosine triphosphate (ATP)
were obtained from Sigma-Aldrich (St. Louis, MO, USA). 1,1-diphenyl-2-
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picrylhydrazyl (DPPH), 2,4,6-Tri(2-pyridyl)-s-triazine (TPTZ), and all other chemicals
used were of analytical grade and were obtained from standard commercial suppliers.

2.2. Materials

From the literature:

Chemical composition of Round Up = glyphosate isopropylamine salt 360 g/L
or 480 g/L + POEA + minor additives (water, preservatives, pH stabilizers, antifoam)
[23-25].

Chemical composition of Force Up: Glyphosate isopropylamine salt = 360 g/L
or 480 g/L.

Potential alternative surfactants in Force Up = alkyl polyglucosides (APGs),
cocamidopropyl betane, propoxylated quaternary ammonium compounds and
coconut shell extract-based surfactants [26—28].

2.3. Methodology
2.3.1. Fish purchase and acclimatization

Five hundred juveniles of Clarias gariepinus with a mean weight of 30 £ 0.3 g
and a mean standard length of 15 + 0.1 cm were used for the experiment and were
purchased from Adeoti Farm in Ondo State, Nigeria. Juveniles were used due to their
sensitivity to toxicity tests compared to adults [29]. The fish were acclimatized under
laboratory conditions in 1000-liter plastic tanks with dimensions of 1400 mm in
diameter X 895 mm in height for 7 days and were fed with commercial floating
pellets at 10% of their body weight. The pond where the fish were obtained had a
temperature of 26.8 °C, a pH of 7.1, and dissolved oxygen of 62.77 ms/cmand the
dechlorinated tap water used for acclimatization had a temperature of 26.0 + 0.8 °C,
a pH of 7.0, and dissolved oxygen of 6.3 £ 0.1 mg/L.

2.3.2. Toxicity study

A static bioassay technique was adopted, and preliminary screening was carried
out to determine the appropriate concentration range for testing chemicals as
described by Chinedu et al. [30]. The concentrations, in weight per volume, of RU
and FU used for the range test were 0.0, 1000, 2000, 3000, 4000, and 5000 mg/L.
Ten Clarias gariepinus juveniles per concentration of toxicant were used for 96 h.
Based on the result of the first range test, it was further evaluated using RU—0.0, 1,
10, 20, 30, 50, 100, and 200 mg/L; and FU—0.0, 6000, 8000, and 10,000 mg/L. The
definitive range of concentrations at which both initiated death was further evaluated.

Fish mortality was daily recorded, removed, and discarded. Fish were considered
dead when no movement upon gentle prodding was observed. Also, the mean
physicochemical parameters (pH, temperature, and dissolved oxygen) of the test water
containing different concentrations of glyphosate were monitored and recorded. The
pH of the solutions was measured using a pH meter, temperature using a mercury-in-
glass thermometer, and dissolved oxygen with a digital dissolved oxygen meter.

2.3.3. Biochemical assays
(a) Tissue preparation
The cerebral tissue of the surviving catfish from the RU and FU exposure after
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4 days was quickly removed, placed on ice, and homogenized in cold 50 mM Tris—
HCI at pH 7.4. The homogenate was centrifuged at 4000% g for 10 min to yield the
low-speed supernatant (S1) fraction that was used for all biochemical assays. Protein
content was determined with bovine serum albumin as the standard using the method
modified by Kade and Rocha [31].

(b) Antioxidant status assays

(i) Lipid peroxidation assay: Lipid peroxidation was determined by monitoring
the production of thiobarbituric acid reactive substances (TBARS) as described by
Kade et al. [32] and Iyanda et al. [8]. The color reaction was developed by adding
300 pL of 8.1% SDS to the medium, followed by the addition of 500 pL of acetic
acid/HCI (pH 3.4) and 500 pL of 0.8% TBA. This mixture was incubated at 95 °C
for 1 h, and the absorbance values of TBARS produced were measured at 532 nm.
The absorbance value was compared to that of a standard curve obtained using
malondialdehyde (MDA).

(i1) GSH level estimation: GSH level of brain tissue of fish exposed to RU and
FU was determined and was estimated using Ellman’s reagent. The brain tissue
homogenate was initially deproteinized with TCA (5% in 1 mmol/EDTA) following
the method modified by Kade et al. [32] and cited by Iyanda et al. [8]. The
absorbance of the yellow color formed in the reaction system was measured at 412
nm.

(iii) DPPH—free radical scavenging ability: The free radical scavenging ability
of the cerebral tissues against DPPH (1,1-diphenyl-2-picrylhydrazyl) free radicals
was evaluated according to Kade and Rocha [31], and Iyanda et al. [8]. Brain tissue
homogenate was mixed with 600 uL of 0.3 mM methanolic solution, which contains
DPPH radicals; the mixture was kept in the dark for 30 min, after which a golden
yellow color was formed as product and was measured at an absorbance of 516 nm.

(iv) FRAP—reducing property: Ferric-reducing antioxidant properties: The
ferric-reducing antioxidant properties of the compounds against TPTZ (2,4,6-Tri(2-
pyridyl)-s-triazine) were evaluated as cited by Kade et al. [32] and Iyanda et al. [8].
300 pL of the protein-free tissue homogenates were mixed with 300 pL. and 900 pL
of TPTZ solution. The mixture was kept in the dark for 10 min, and absorbance
values were measured at 543 nm.

(c) Enzymes activity

(i) Na'/K*-ATPase assay: Na'/K'-ATPase activity was assayed according to
Kade et al. [33] and Iyanda et al. [8]. Briefly, the reaction mixture contained 3 mM
MgCl,, 125 mM NacCl, 20 mM KCIl, 200 mM sodium azide, 50 mM Tris—HCI at pH
7.4, and 100 pL of brain tissue homogenate, all in a final volume of 500 uL. The
reaction was initiated by adding 3.0 mM ATP. Controls were carried out under the
same conditions with the addition of 0.1 mM ouabain. Na'/K*-ATPase activity was
estimated by the difference between the two assays. Released inorganic phosphorous
(Pi) was measured by the method modified by Kade et al. [33]. Protein was
estimated using a modification method of Kade and Rocha [31] using bovine serum
albumin.

(i1) Purinergic enzymes: NTPDase assay: NTPDase enzymatic activity in the
reaction medium was determined as described by Kade et al. [31] and Iyanda et al.
[8]. 50 pL of tissue homogenate was added to the reaction mixture and was pre-
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incubated for 10 min at 37 °C. The reaction was initiated by the addition of 3.0 mM
ATP.

5’-Nucleotidase assay: 5’-Nucleotidase activity in a reaction medium was
determined as described by Kade et al. [31] and Iyanda et al. [8]. 50 uL of brain
tissue homogenate was added to a reaction mixture containing 0.1 M Tris-HCI buffer,
pH 7.4, and 30 mM MgSO4 and was pre-incubated for 10 min at 37 °C. 3.0 mM
AMP was added to the mixture to initiate the reaction and incubated for 30 min, after
which absorbance was read at 650 nm.

2.4. Statistical analysis

Results were analyzed by appropriate analysis of variance (ANOVA), and this
is indicated in the text of the results. Differences between groups were considered to
be significant when P < 0.05.

3. Results

3.1. Physicochemical parameters analysis

The range of values of the physicochemical analyses of diluting test water for
glyphosate brands is presented in Table 1. These values are within the recommended
range for fish rearing.

Table 1. Physicochemical parameters of diluting water monitored during an
experiment with glyphosate.

Parameters Control RU FU

Temperature (°C) 25.25+0.03 262+1.5 258+1.3
pH 7.14 +£0.04 6.26+0.3 7.06 +0.3
Dissolved oxygen (mg/L) 6.16 £0.37 5.10+0.3 5.16+0.3

3.2. Mortality/96 h range analysis

This is a comparative experimental study between RU and FU. Firstly, the fish
were exposed to both RU and FU at high concentrations in thousands ranging from
1000 to 5000 mg/L, 10 fish in each tank for RU and FU. Total fish mortality was
observed in groups treated with RU (Figure 1), while the fish exposed to FU all
survived (Figure 2). Then RU was narrowed down, ranging from a concentration of
200-1000 mg/L, and fish exposed had total mortality (this experiment was a pilot
study and was not included due to the complete mortality). Furthermore, fish were
exposed to concentrations ranging from 10 to 200 mg/L (Figure 3); fish survived
within the range of 0 to <20 mg/L, while fish mortality occurred within the range of
20 to 200 mg/L. FU, on the other hand, was increased, ranging from 6000 to 10,000
mg/L, due to a survival rate at 5000 mg/L (Figure 4), and complete mortality was
recorded. However, it is imperative to further narrow the concentrations of both RU
and FU to investigate the mortality between survival and the last smallest
concentration for mortality to find the exact concentration range that the herbicide
initiated death. Therefore, the concentration range of RU was narrowed between 10
and 18 mg/L (Figure 5), and the concentration range of FU was downscale to 4800
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mg/L and 5400 mg/L (Figure 6), and a fair number of fish were observed to survive
between these ranges after 4 days, thereby estimating the lethal concentration at
which 50% (LCso) of the fish survived.
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Figure 1. Range-finding test showing the response of catfish to various
concentrations of RU.
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Figure 2. Range-finding test showing the response of catfish to various
concentrations of FU.
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Figure 3. Showing the range of concentrations further analyzed for toxicity of RU in
which the experimental catfish were exposed.
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Figure 4. Range concentrations for the determination of LCso of FU.
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Figure 5. Concentration range used for definitive test for RU.
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Figure 6. Concentration range used for definitive test for FU.

3.3. Biochemical evaluation of the catfish exposed to RU and FU
herbicides

Biochemical indices are necessary to be evaluated to have insight into
mechanistic activities in the fish that are probably responsible for the mortality
recorded in toxicity studies. The evaluation of these indices was analyzed on the
surviving juveniles of Clarias gariepinus after 4 days of exposure to definitive
concentrations of RU and FU, and the results are presented below:

3.3.1. Effect of RU- and FU-induced lipid peroxidation in brain tissue of
exposed catfish

The effect of RU and FU on the level of TBARS in the brain of exposed catfish
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was presented in Table 2. When compared with the control group, it was observed
that the level of TBARS formed in the cerebral homogenate of the exposed catfish
increased (P < 0.05) as the concentration increased, and the level of TBARS formed
was higher in the RU-treated fish than in the FU-treated group, thereby resulting in
higher lipid peroxidation in the RU-treated fish than in the FU-treated fish.

3.3.2. Effect of RU and FU on DPPH radical scavenging ability in cerebral
tissue of African catfish

The ability of the cerebral tissue homogenates to scavenge DPPH radicals after
exposure to RU and FU decreased and was observed to be more pronounced in the
group treated with RU than in the group treated with FU as their concentrations
increased when compared with the control (Table 2).

3.3.3. Effect of RU and FU on the ferric reducing antioxidant power

Table 2 revealed the effect of RU and FU on the ferric reducing power of the
cerebral tissue. There was a reduction in the reducing properties of the brains of
catfish exposed to RU compared to catfish exposed to FU at an increasing
concentration.

3.3.4. Effect of RU and FU on cerebral GSH level in African catfish

The levels of GSH in the brains of exposed catfish are presented in Table 2. It
was observed to be significantly lower than the catfish in the control group and is
more pronounced in the group treated with RU than in the FU-treated group. The
decreased GSH level diminishes the antioxidant capacity of the catfish, which
eventually induces oxidative stress, thereby exposing the cells to degenerative
syndromes [34,35].

3.3.5. Enzyme activity

(i) Effect of glyphosate—based on the activity of Na*/K* ATPase in exposed
catfish

The effect of FU and RU on the activity of Na'/K" ATPase in the cerebral
homogenate of the exposed experimental catfish was evaluated and presented in
Table 3. Exposure to RU and FU caused a significant (P < 0.05) inhibitory effect on
the levels of Na'/K" ATPase in the brain of African catfish in a concentration-
dependent manner when compared with the control group.

(i) Effect of RU and FU on the activity of NTPDase

Table 3 shows the effect of RU and FU on the activity of NTPDase in the
cerebral homogenate of the exposed catfish. Exposure to FU and RU solutions
caused a significant increase in the levels of NTPDase in the tissues of African
catfish in a concentration-dependent manner whereby RU-treated fish had higher
NTPDase activity than the FU-treated group.

(iii) Effect of FU and RU on the activity of 5’nucleotidase in exposed catfish

The effect of RU and FU on the 5’nucleotidase activity in the cerebral
homogenate of the exposed catfish was evaluated and presented in Table 3.
Exposure to both RU and FU, when compared with the control group (P < 0.05),
caused a significant increase in the activity of 5’nucleotidase in which the activity
was higher in the group treated with RU than in the group treated with FU in the
cerebrum of African catfish in a concentration-dependent manner.
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Table 2. Effects of RU and FU on redox status of the brain of exposed African catfish.

Experimental toxicants Concentrations (mg/L) Lipid peroxidation DPPH FRAP GSH
Control 197.90 £8.9 31.08+ 1.6 86.21+4.3 0.106 = 0.005
10 377.12+£13.9 46.10+2.3 61.20 +3.0 0.096 + 0.004

U 11.5 389.57 £ 14.5 55.18+2.5 43.16 2.1 0.085 +0.004
13 503.14 £ 15.2* 68.19 £2.9* 31.14 £ 1.6* 0.067 £ 0.004*
Control 142.96 £ 8.3 28.50 £ 1.4 84.12 +3.7 0.123 +£0.003
4600 221.55+£10.1 41.72£2.1 7124 +£2.6 0.098 +0.005

U 4800 297.87 £10.4 59.73 £3.0 6521 +£2.0 0.091 +0.005
5000 327.79 £ 11.8* 65.77 £3.2% 46.13 +£1.8* 0.08 £ 0.004*

Data are reported as mean £SEM for at least ten fish per group,

A) Unit of TBARS is pM malondialdehyde (MDA)/h/g tissues,

B) Unit of DPPH is % free radicals unscavenged properties,

C) Unit of FRAP is % ferric reducing antioxidant properties,

D) Reduced glutathione (GSH) levels are presented as pmol/g tissue,
*Significantly different from the control group (ANOVA/Duncan, p < 0.05).

Table 3. Evaluation of sulthydryl enzymes in catfish exposed to RU and FU (nmolPi/mgProtein/min).

Experimental toxicants Concentrations (mg/L) Na*/K*-ATPase NTPDase 5’-Nucleotidase
Control 196.31 £9.8 108.59 +5.4 11.73£0.6

RU 10 141.93 £7.1 157.46 £7.9 3488 1.7
11.5 112.01 £ 5.6* 165.61 £ 8.3 48.88 2.4
13 100.82 +5.1* 187.90 + 9.4* 61.45+3.1*
Control 202.29 +10.1 104.32 +5.2 1573+ 1.1

FU 4600 14741+7.4 133.18 £6.7 3488 +1.7
4800 139.69 + 7.0* 138.46 £6.9 46.59 £2.3
5000 115.98 £ 5.8* 168.61 + 8.4* 55.31+2.8*

Data are expressed as means + SEM of ten catfish.
*Significantly different from the control group (ANOVA/Duncan, P < 0.05).

4, Discussion

Several studies have reported a significant difference in the toxicities of
glyphosate standards and different glyphosate-based commercial herbicide
formulations. The differential toxicity of commercial glyphosate herbicides and
glyphosate standards is indicative of the presence of chemical species with divergent
reactivities [16,17]. An understanding of the biochemical mechanisms involved in
their toxicities could give substantive insights into the likely intracellular interactions
of the constituent chemical species present in individual commercial formulations.
This study was carried out to evaluate the toxicity of glyphosate-based herbicides in
response to catfish. There was a modulatory effect observed in the glyphosate-based
herbicides (RU and FU) in response to the environment and toxicity on the non-
target organisms, especially aquatic organisms. RU (Figure 1) in this study appears
to be toxic at extremely low concentration whereas FU toxicity was at extremely
high concentrations. Nwani et al. [22] reported 211.80 mg/L. and 32 mg/L as LCs
obtained when Tilapia zillii and Clarias gariepinus were exposed to FU and RU,
respectively.

Also, Ukaegbu et al. [36] reported the LCso value of 0.56 mg/L as the sublethal
concentration of Round Up glyphosate in juvenile African catfish. Additionally,
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Awoke et al. [14] and Edeh et al. [37] reported 44.67 mg/L. and 1.50 mg/L,
respectively, as LCso values for 96 h exposure of glyphosate commercial formulation
(Mulsate) to Clarias gariepinus. This disparity in toxicity of glyphosate-based
herbicide may speculatively be due to their industrial formulation process and the
composition of surfactants used in the formulation. To corroborate this speculation,
since the emergence of many new glyphosate-based herbicides, there has been a
modification of different chemistry and surfactant mixtures that contain alkyl
polysaccharides or other biodegradable surfactants with less acute toxicity to non-
target organisms like fish [16,28,38]. Such surfactant mixtures are (a) alkyl
polysaccharide, which is derived from sugars and fatty alcohols and used in
herbicides to improve wetting and spreading; (b) cocamidopropyl betaine, which is a
surfactant derived from coconut oil, offers effective wetting and foaming properties;
(c) propoxylated quaternary ammonium surfactants, which are developed to replace
first-generation POEAs; and (d) coconut shell extract-based surfactants, which have
improved glyphosate efficacy by 27% over those with POEA, reduce surface tension,
and enhance plant uptake [26 - 28,39]. These surfactants cause milder gill alterations,
degrade more easily and rapidly exhibiting less toxicity, reduce impact on the
environment, and are less disruptive to biological membranes, making them safe for
aquatic life. Therefore, the significantly less toxicity mediated by FU may probably
be a function of the presence of such lower acutely toxic and environmentally
friendly Surfactant mixture. However, the composition of FU is proprietary and not
publicly disclosed, probably due to commercial reasons such as protecting
proprietary blends from duplication and preserving market advantage.

On the contrary, the speculation in this study is further corroborated by reports
that implicate polyoxyethylene amine (POEA) as one of the major surfactants used
in RU glyphosate-based commercial herbicide formulations and is more toxic than
the active ingredients as well as the formulated product itself [24,25,40—44].
Meanwhile, most herbicides must cross the plasma membrane before reaching their
site of action, and several researchers have suggested that the plasma membrane is a
limiting barrier to the foliar uptake of glyphosate into the cell [16,23,45,46].
However, surfactant MON 08184 (Monsanto Agricultura Products Co., St. Louis,
MO), a polyethoxylated tallow amine (POEA) used mostly in the commercial
formulation of RU glyphosate, can penetrate the cuticle and act at the plasma
membrane [45,47]. Therefore, the involvement of effective surfactants increases the
permeability of the cuticle, plasma membrane, or both in foliar uptake of glyphosate
and promotes phytotoxicity [16,17,47,48].

Glyphosate-based herbicides are available in the form of isopropylamine salt,
which aids the solubility, stability, and absorption but is not a major driver of
toxicity. Apart from the constituent chemical species in commercial herbicide
formulations, which were specified in the Section 2.2 of this study, other
environmental factors such as the physicochemical properties of the aquatic habitat
could impact their toxicity.

The physicochemical properties of aquatic bodies significantly influence the
toxicity of xenobiotics on aquatic organisms such as fish [49-51]. In the present
study, the ranges of values of the physicochemical analyses of test water for RU and

10
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FU as presented in Table 1 were reported and were within the recommended range
for good culturing and survival of catfish (Clarias gariepinus). Hence, they did not
significantly influence the toxicity of the chemicals to aquatic organisms. However,
investigation of biochemical parameters could give tangible insights into the
toxicological mechanism as reactivities of the chemical species present in the
individual commercial herbicide formulations.

From the foregoing, this discrepancy in the toxicity of glyphosate herbicides
may relatively perturb their toxicological responses to the physiology like redox
status and enzyme activities in the tissue homogenate of the exposed organisms.
Therefore, it is imperative to ascertain the antioxidant status of the exposed catfish.
Glutathione (y-glutamylcysteinyl glycine, GSH) is a major component of the
antioxidant defense system in fish and is an antioxidant that protects against
oxidative stress and neutralizes reactive oxygen species (ROS) and their harmful
reaction products. It also contributes to a stronger immune system in fish, potentially
by increasing the abundance of beneficial intestinal microbiota and reducing the risk
of infections. In this study, a depletion in the level of GSH (Table 2) was observed
in the brain of catfish exposed to both brands of glyphosate but was more
pronounced in RU than in the fish exposed to FU, which may be due to the
reactivities of surfactants used for the formulation of RU, as earlier speculated.
However, depletion in the level of GSH can lead to immune deficiency, increased
susceptibility to oxidative stress through increased ROS, potentially damaging the
cell membranes like DNA and proteins, resulting in cell death [52] and possibly
death of the fish, as recorded in Figures 1-6. Another parameter to evaluate the
antioxidant level of the exposed catfish is lipid peroxidation, which is a biomarker to
measure the ROS damage of lipids in cell membranes. A marked increase was
observed in the level of thiobarbituric acid reactive substances (TBARS) formed by
the peroxidation of the membrane lipid bilayer of the cerebral tissue of exposed
catfish in both groups but was more significant in the RU-treated group than in the
FU-treated group (Table 2). This corroborates the speculative verdict of surfactants
being responsible for alteration in the toxicity of glyphosate herbicide. However, the
formation of these products (TBARS) generates a cascade of free-radical reactions
that can greatly alter the physicochemical properties and physiological function of
biological membranes, resulting in cell death and loss of tissue function [53]. This
increased lipid peroxidation is validated by Mansour et al. [54], who reported an
increase in lipid peroxidation in the liver and testes of catfish exposed to oxyfluorfen.

Additionally, the inherent antioxidative ability in the cerebral tissue of catfish
after exposure to RU and FU was assessed using the DPPH scavenging test, which is
a common and reliable way of assessing the antioxidant activity of catfish. This is
because catfish like Clarias gariepinus and Pangasius hypopthalmus possess
antioxidant peptides and compounds that can scavenge DPPH radicals, indicating
their antioxidant potential [55,56]. DPPH is a stable free radical that accepts an
electron or hydrogen radical to become a stable diamagnetic molecule [57] and is
used to evaluate antioxidant levels since antioxidants have the ability to readily
donate their hydrogen to DPPH. It was discovered that both groups of exposed fish
(Table 2) displayed a reduction in the ability to scavenge free radicals, though it was
more pronounced in the group treated with RU than in the group treated with FU.
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The reduced cerebral ability of the catfish to scavenge free radicals implies that more
radicals are left unscavenged, building up ROS, a situation that may result in fish
being more susceptible to oxidative stress, causing damage to cell membranes and
various health problems, including cardiovascular disease, neurodegenerative
disorders, effects on growth, reproduction, and immune function [58,59].

Similarly, ferric reducing antioxidant power (FRAP) is another antioxidant
status parameter that is used to assess the total antioxidant capacity of catfish. FRAP
measures the ability of an organ to reduce ferric ions (Fe**) to ferrous ions (Fe?") via
the inherent antioxidant capacity in them [60,61]. Hence, higher reducing power
indicates better abilities to reduce transition metals and transfer an electron to free
radicals to become stable chemical species [62]. In this study, a toxicity of both
groups of glyphosate was demonstrated (Table 2), with a marked reduction in
antioxidant power in the cerebral tissue of exposed catfish having the group treated
with RU lower in antioxidant power than the group treated with FU. This is an
indication of weaker antioxidant power consequently leading to oxidative stress,
which can damage cells and tissues, impair the antioxidant system, and lower FRAP
values.

All these antioxidant status parameters had depletion in the antioxidant levels in
the exposed catfish, leading to accumulation of free radicals, ultimately resulting in
oxidative stress, which can increase inflammation of purinergic enzymes and
shutdown of crucial enzymes like ion-transport protein (e.g., sodium/potassium
ATPase). Therefore, it is vital to evaluate these enzymes to ascertain the possible
toxicological effects of these glyphosate products on the brains of exposed catfish.

The sodium-potassium pump, or Na'/K'-ATPase, is a vital transmembrane
protein in animal cells, including catfish, that maintains sodium and potassium ion
gradients across the cell membrane. This pump helps catfish with osmoregulation—
controlling the osmotic pressure and preventing cells from swelling and shrinking—
and nerve function, which is essential for the transmission of electrical signals along
nerve pathways and muscle contraction by maintaining the proper balance of sodium
and potassium ions [63—65]. There is depletion in the activity of Na'/K* ATPase
exerted by RU and FU (Table 3) in the brain of exposed catfish, which was more
prominent in the group treated with RU than in the FU-treated group, which also
corroborates the speculation of reactivities of surfactants to the formulation of
commercial glyphosate. However, the inhibition or reduction in the activity of the
sodium pump leads to several effects, including increased intracellular sodium,
altered membrane potential, calcium influx changes, disrupted cellular processes,
altered pathological conditions, and environmental toxicants that modulate the
sodium pump activity [8,65-67], which may lead to inflammation and increased
activities of inflammation biomarkers like purinergic signaling enzymes.

Likewise, the activity of purinergic signaling enzymes (NTPDase and
5’nucleotidase) was evaluated due to their crucial role in physiological processes,
including modulation of immune responses, particularly during stress, infection, and
anti-inflammatory effects—protecting against tissue damage and promoting
healing—and playing a role in handling stress, contributing to the restoration of
homeostasis. The enzymes like NTPDase and 5 nucleotidase regulate the breakdown
of extracellular nucleotides and nucleosides like ATP, ADP, and AMP, which act as
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5. Conclusion

The disparity in the toxicity of the commercial-grade glyphosate may depend on
surfactants employed in herbicide formulations, fish species, and the test conditions.
Moreover, it is clear that the presence of surfactants has a modulatory effect on the
oxidative capacity of glyphosate. Also, the glyphosate brands had toxicological
effects (even though RU is more than FU), leading to inflammation of purinergic
enzymes, shutdown of iron transport in the brain of the exposed catfish, and
depletion of the antioxidant status of the fish, leading to reduced fish quality, loss of
appetite, neurological changes, inflammation of cells, and eventually death of the
fish, as observed and recorded in the definitive studies.

Recommendation

There is a dearth of information available in the literature about the chemical
nature and specific surfactants industrially introduced in the various formulated
products of glyphosate. This serves as a major limitation to the investigation of these
interferences, and therefore, more research still needs to be done to justify and
ascertain these.
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