Re-emphasizing the diversity and relevance of chitosan-nano-types derived from marine-actinomycetes; a biotechnological and industrialization blueprint

Authors

  • Bright E. Igere 1 Department of Microbiology (Biotechnology Unit), Delta State University, Abraka 330105, Delta State, Nigeria; 2 Biotechnology and Emerging Environmental Infections Pathogens Research Group (BEEIPREG), Biotechnology Unit, Department of Microbiology, Delta State University, Abraka 330105, Delta State, Nigeria Author

DOI:

https://doi.org/10.65746/pec60

Keywords:

chitosan; nano-type; actinomycetes; nano-type quaternized chitosan; biotechnology; industrialization

Abstract

One emerging and novel area of biotechnology is the application of microorganisms, their biochemical products and other additional bio-molecules for human, animals and plant livelihood improvements. Such areas of growing scientific strides are made principally by the understanding of genomics (or metagenomics), proteomics and culturonomics, as it is recently advancing especially among biopolymers sourced from marine niche. One such bio-molecule recovered from marine habitats is chitosan and its nano-type derivatives from marine organisms (Actinomycetes). The study describes re-emphasizing the diversity and relevance of chitosan-nano-types derived from marine-actinomycetes; a biotechnological and industrialization blueprint. A title-based search was applied to collate relevant documents from the Scopus database, PubMed database, and Web of Science (WoS) database using a Boolean previously described by related investigators. Eligible data sets on chitosan-nano particulate were screened and used to describe/evaluate diverse research-based and knowledge-scape of marine-based nanochitosan. Emphasis revealed the biodegradability, biocompatibility, high adsorbent and versatility with increased selectivity in stain/dye removal as well as metallic-pollutant/organic-waste removal, inexpensiveness and environmental friendliness. It is hoped that the biomolecular versatility, biocompatibility, polycationic and nontoxic nature of nanochitosan from marine organism, may be applied as nano-type quaternized chitosan (QNC). A scientific mechanism that depends on charged molecules and targets, which may be directed at positively charged quaternary groups, nucleic acids (DNA and RNA), proteins/amino acids, hydroxyl and carboxylic ions. Such advancement would give birth to a new approach to scientific research, improve molecular studies, biotechnological processes, pharmaceutical companies, diagnostics/medicine, and also revolutionize industrialization.

References

1. Akila RM. Fermentative production of fungal Chitosan, a versatile biopolymer (perspectives and its applications). Advances in Applied Science Research. 2014; 5(4): 157-170.

2. Ekundayo TC, Igere BE. Knowledge evolution in nanochitosanresearchand innovative biotechnological applications: A multinational assessment for nowcast and future forecast. Journal of Biology & Nature. 2022; 14(2): 1-19.

3. Younes I, Rinaudo M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Marine Drugs. 2015; 13(3): 1133-1174. doi: 10.3390/md13031133

4. Igere BE, Onohuean H, Nwodo UU. Modern knowledge-scape possess petite influence on the factual persistence of resistance determinants (ARGs/MGEs): A map and assessment of discharged wastewater and water bodies. Heliyon. 2022; 8(12): e12253. doi: 10.1016/j.heliyon.2022.e12253

5. Igere BE, Onohuean H and Nwodo UU.Water bodies are potential hub for spatio‑allotment of cell‑free nucleic acid and pandemic: a pentadecadal (1969–2021) critical review on particulate cell‑free DNA reservoirs in water nexus. Bulletin of the National Research Centre. 2022; 46:56. doi: 10.1186/s42269-022-00750-y

6. Igere, Bright E, Hope Onohuean, Declan C. Iwu, and Etinosa O. Igbinosa. Polymyxin sensitivity/resistance cosmopolitan status, epidemiology and prevalence among O1/O139 and non-O1/non-O139 Vibrio cholerae: A meta-analysis.Infectious Medicine.2023; 2(4); 283-293.

7. Oluwafemi YD, Igere BE, Ekundayo TC, et al. Prevalence of Listeria monocytogenes in milk in Africa: a generalized logistic mixed-effects and meta-regression modelling. Scientific Reports. 2023; 13(1). doi: 10.1038/s41598-023-39955-0

8. Igere BE, Ekundayo TC. Global mapping of cholera vibrio and outbreaks in the pre-millennium development goals (MDG)/sustainable development goals (SDG) and MDGs/SDGs era of 1990–2019. Microbial Pathogenesis. 2020 Dec 1;149:104319.

9. Igere BE, Okoh AI, Nwodo UU. Lethality of resistant/virulent environmental vibrio cholerae in wastewater release: An evidence of emerging virulent/antibiotic-resistant-bacteria contaminants of public health concern. Environmental Challenges. 2022; 7: 100504. doi: 10.1016/j.envc.2022.100504

10. Igere BE, Peter WO, Beshiru A. Distribution/Spread of Superbug and Potential ESKAPE-B Pathogens amongst Domestic and Environmental Activities: A Public Health Concern. Discovery. 2022; 58(313): 1-20.

11. Khanafari A, Marandi R, Sanatei S. Recovery of chitin and chitosan from shrimp waste by chemical and microbial methods. Iran. J. Environ. Health Sci. Eng. 2015; 5: 1–24.

12. Bustos RO, Healy MG. Microbial deproteinization of waste prawn shell. In: Proceedings of the Second International Symposium on Environmental Biotechnology; 1994. pp. 15–25.

13. Guerrero Legarreta I, Zakaria Z, Hall GM. Lactic fermentation of prawn waste: Comparison of commercial and isolated starter cultures. In: Advances in Chitin Science. Jacques Andre publishers: Lyon, France; 1996. pp. 399–406.

14. Cira LA, Huerta S, Guerrero I, et al. Scaling up of lactic acid fermentation of prawn wastes in packed-bed column reactor for chitin recovery. In: Advances in Chitin Science. Potsdam University: Postdam, Germany; 2000. pp. 2–27.

15. Arbia W, Arbia L, Adour L, Amrane A. Chitin extraction from crustacean shells using biological methods—A review. Food Technol. Biotech. 2013; 51: 12–25.

16. Hours RA, Gortari MC. Biotechnological processes for chitin recovery out of crustacean waste: A mini-review. Electronic Journal of Biotechnology. 2013; 16(3). doi: 10.2225/vol16-issue3-fulltext-10

17. Alishahi M, Hajipour O, Ghorbanpur M, Mesbah M. Adjuvant effects of nanochitosan on immunogenicity of Aeromonas hydrophila vaccine in Cyprinus Carpio. Journal of Veterinary Research. 2018; 73(1): 72-81.

18. Ghadi A, Mahjoub S, Tabandeh F, Talebnia F. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering. Caspian Journal of Internal Medicine. 2014;5(3): 156.

19. Gimmler A, Korn R, de Vargas C, et al. The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates. Scientific Reports. 2016; 6(1). doi: 10.1038/srep33555

20. Albulov AI, Frolova MA, Grin AV, et al. Application of Chitosan in Veterinary Vaccine Production. Applied Biochemistry and Microbiology. 2018; 54(5): 518-521. doi: 10.1134/s0003683818050034

21. Alcarraz E, Flores M, Tapia ML, et al. Quality of lettuce (LactucasativaL.) grown in aquaponic and hydroponic systems. Acta Horticulturae. 2018; (1194): 31-38. doi: 10.17660/actahortic.2018.1194.6

22. Oren A. Taxonomy of halophilic Archaea: current status and future challenges. Extremophiles. 2014; 18(5): 825-834. doi: 10.1007/s00792-014-0654-9

23. Sorokin DY, Berben T, Melton ED, et al. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles. 2014; 18(5): 791-809. doi: 10.1007/s00792-014-0670-9

24. Poli A, Finore I, Romano I, et al. Microbial Diversity in Extreme Marine Habitats and Their Biomolecules. Microorganisms. 2017; 5(2): 25. doi: 10.3390/microorganisms5020025

25. Yooseph S, Sutton G, Rusch DB, et al. The Sorcerer II Global Ocean Sampling Expedition: Expanding the Universe of Protein Families. PLoS Biology. 2007; 5(3): e16. doi: 10.1371/journal.pbio.0050016

26. Klippel B, Sahm K, Basner A, et al. Carbohydrate-active enzymes identified by metagenomic analysis of deep-sea sediment bacteria. Extremophiles. 2014; 18(5): 853-863. doi: 10.1007/s00792-014-0676-3

27. Sohier D, Berthier F, Reitz J. Safety assessment of dairy microorganisms: Bacterial taxonomy☆. International Journal of Food Microbiology. 2008; 126(3): 267-270. doi: 10.1016/j.ijfoodmicro.2007.08.026

28. Hentschel U, Piel J, Degnan SM, et al. Genomic insights into the marine sponge microbiome. Nature Reviews Microbiology. 2012; 10(9): 641-654. doi: 10.1038/nrmicro2839

29. Bruns A, Nübel U, Cypionka H, et al. Effect of Signal Compounds and Incubation Conditions on the Culturability of Freshwater Bacterioplankton. Applied and Environmental Microbiology. 2003; 69(4): 1980-1989. doi: 10.1128/aem.69.4.1980-1989.2003

30. Hong S, Lee JW, Son SM. Properties of polysaccharide-coated polypropylene films as affected by biopolymer and plasticizer types. Packaging Technology and Science. 2005; 18: 1–9.doi: 10.1111/raq.12326

31. Robert V, Volokhina EB, Senf F, et al. Assembly Factor Omp85 Recognizes Its Outer Membrane Protein Substrates by a Species-Specific C-Terminal Motif. Waldor M, ed. PLoS Biology. 2006; 4(11): e377. doi: 10.1371/journal.pbio.0040377

32. Poli A, Anzelmo G, Nicolaus B. Bacterial Exopolysaccharides from Extreme Marine Habitats: Production, Characterization and Biological Activities. Marine Drugs. 2010; 8(6): 1779-1802. doi: 10.3390/md8061779

33. Goodfellow BW, Chadwick OA, Hilley GE. Depth and character of rock weathering across a basaltic‐hosted climosequence on Hawai’i. Earth Surface Processes and Landforms. 2013; 39(3): 381-398. doi: 10.1002/esp.3505

34. Lynch RC, Darcy JL, Kane NC, et al. Metagenomic evidence for metabolism of trace atmospheric gases by high-elevation desert Actinobacteria. Frontiers in Microbiology. 2014; 5. doi: 10.3389/fmicb.2014.00698

35. Panchanathan E, Ramanathan G, Lakkakula BVKS. Effect of flupirtine on the growth and viability of U373 malignant glioma cells.Cancer Biology & Medicine. 2013;10(3): 142-147.

36. Hope O, Bright IE, Alagbonsi AI. GC-MS biocomponents characterization and antibacterial potency of ethanolic crude extracts of Camellia sinensis. SAGE Open Medicine. 2022; 10. doi: 10.1177/20503121221116859

37. Okudoh VI, Wallis FM. Antimicrobial activity of rare actinomycetes isolated from natural habitats in KwaZulu-Natal, South Africa.South African Journal of Science. 2007;103(5-6): 216-222

38. Subramani R, Sipkema D. Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products. Marine Drugs. 2019; 17(5): 249. doi: 10.3390/md17050249

39. Subramani R, Aalbersberg W. Marine actinomycetes: An ongoing source of novel bioactive metabolites. Microbiological Research. 2012; 167(10): 571-580. doi: 10.1016/j.micres.2012.06.005

40. Betancur LA, Naranjo-Gaybor SJ, Vinchira-Villarraga DM, et al. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach. PLOS ONE. 2017; 12(2): e0170148. doi: 10.1371/journal.pone.0170148

41. Bonferoni MC, Sandri G, Rossi S, et al. Chitosan and its salts for mucosal and transmucosal delivery. Expert Opinion on Drug Delivery. 2009; 6(9): 923-939. doi: 10.1517/17425240903114142

42. Avila LA, Lee SY, Tomich JM. Synthetic In Vitro Delivery Systems for Plasmid DNA in Eukaryotes. Journal of Nanopharmaceutics and Drug Delivery. 2014; 2(1): 17-35. doi: 10.1166/jnd.2014.1043

43. Zotchev SB, Sekurova ON, Kurtböke Dİ. Metagenomics of marine actinomycetes: from functional gene diversity to biodiscovery. In: Marine OMICS. CRC Press; 2016. pp. 185-206.

44. Balakrishnan S, Rameshkumar MR, Nivedha A, et al. Biosurfactants: An Antiviral Perspective. In: Multifunctional Microbial Biosurfactants. Cham: Springer Nature Switzerland; 2023. pp. 431-454.

45. Chen P, Zhang L, Guo X, et al. Diversity, Biogeography, and Biodegradation Potential of Actinobacteria in the Deep-Sea Sediments along the Southwest Indian Ridge. Frontiers in Microbiology. 2016; 7. doi: 10.3389/fmicb.2016.01340

46. Barka EA, Vatsa P, Sanchez L, et al. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiology and Molecular Biology Reviews. 2016; 80(1): 1-43. doi: 10.1128/mmbr.00019-15

47. Overmann J, Lepleux C. Marine Bacteria and Archaea: Diversity, adaptations, and culturability. In: The Marine Microbiome: An Untapped Source of Biodiversity and Biotechnological Potential. Springer: Cham, Switzerland; 2016. pp. 21–55.

48. Schwager E, Luo C, Huttenhower C, et al. Genomic Sequencing and Other Tools for Studying Microbial Communities. Microbe Magazine. 2015; 10(10): 419-425. doi: 10.1128/microbe.10.419.1

49. Sivalingam P, Hong K, Pote J, et al. Extreme Environment Streptomyces: Potential Sources for New Antibacterial and Anticancer Drug Leads? International Journal of Microbiology. 2019; 2019: 1-20. doi: 10.1155/2019/5283948

50. Lai H, Wei X, Jiang Y, et al. Halopolyspora alba gen. nov., sp. nov., isolated from sediment. International Journal of Systematic and Evolutionary Microbiology. 2014; 64(Pt_8): 2775-2780. doi: 10.1099/ijs.0.057638-0

51. Jiang Y, Li Q, Chen X, et al. Isolation and cultivation methods of Actinobacteria. In: Actinobacteria-Basics and Biotechnological Applications. InTech: London, UK; 2016. pp. 39–57.

52. Zhang G, Wang S, Wang L. Sediminivirgaluteola gen. nov., sp. nov., a member of the family Brevibacteriaceae, isolated from marine sediment. International Journal of Systematic and Evolutionary Microbiology. 2016; 66(3): 1494-1498. doi: 10.1099/ijsem.0.000909

53. Zhang Y, Bi J, Wang S, et al. Functional food packaging for reducing residual liquid food: Thermo-resistant edible super-hydrophobic coating from coffee and beeswax. Journal of Colloid and Interface Science. 2019; 533: 742-749. doi: 10.1016/j.jcis.2018.09.011

54. Azman AS, Zainal N, Mutalib NSA, et al. Monashia flava gen. nov., sp. nov., an actinobacterium of the family Intrasporangiaceae. International Journal of Systematic and Evolutionary Microbiology. 2016; 66(2): 554-561. doi: 10.1099/ijsem.0.000753

55. Ward AC, Bora N. Diversity and biogeography of marine actinobacteria. Current Opinion in Microbiology. 2006; 9(3): 279-286. doi: 10.1016/j.mib.2006.04.004

56. Igbinosa IH, Nwodo UU, Sosa A, et al. Commensal Pseudomonas Species Isolated from Wastewater and Freshwater Milieus in the Eastern Cape Province, South Africa, as Reservoir of Antibiotic Resistant Determinants. International Journal of Environmental Research and Public Health. 2012; 9(7): 2537-2549. doi: 10.3390/ijerph9072537

57. Igere BE, Ehwarieme AD, Okolie EC, Gxalo O. Exogenous and cell-free nucleic acids in water bodies: A penchant for emergence of pandemic and other particulate nucleic acid associated hazards of public health concern in water nexus Nigerian Journal of Science and Environment. 2021; 19(2).

58. Heald GH, Rand RJ, Benjamin RA, et al. Integral Field Unit Observations of NGC 4302: Kinematics of the Diffuse Ionized Gas Halo. The Astrophysical Journal. 2007; 663(2): 933-947. doi: 10.1086/518087

59. Jensen PR, Gontang E, Mafnas C, et al. Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environmental Microbiology. 2005; 7(7): 1039-1048. doi: 10.1111/j.1462-2920.2005.00785.x

60. Sibanda T, Mabinya LV, Mazomba N, et al. Antibiotic Producing Potentials of Three Freshwater Actinomycetes Isolated from the Eastern Cape Province of South Africa. International Journal of Molecular Sciences. 2010; 11(7): 2612-2623. doi: 10.3390/ijms11072612

61. Skoglund P, Posth C, Sirak K, et al. Genomic insights into the peopling of the Southwest Pacific. Nature. 2016; 538(7626): 510-513. doi: 10.1038/nature19844

62. Kwon YK, Kim P. Unusually high thermal conductivity in carbon nanotubes. High Thermal Conductivity Materials. 2006; 227-265

63. Han Z, Wang C, Song X, et al. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theoretical and Applied Genetics. 2005; 112(3): 430-439. doi: 10.1007/s00122-005-0142-9

64. Riedlinger J, Reicke A, Zähner H, et al. Abyssomicins, Inhibitors of the para-Aminobenzoic Acid Pathway Produced by the Marine Verrucosispora Strain AB-18-032. The Journal of Antibiotics. 2004; 57(4): 271-279. doi: 10.7164/antibiotics.57.271

65. Feling RH, Buchanan GO, Mincer TJ, et al. Salinosporamide A: A Highly Cytotoxic Proteasome Inhibitor from a Novel Microbial Source, a Marine Bacterium of the New Genus Salinospora. Angewandte Chemie International Edition. 2003; 42(3): 355-357. doi: 10.1002/anie.200390115

66. Fenical W, Jensen PR. Developing a new resource for drug discovery: marine actinomycete bacteria. Nature Chemical Biology. 2006; 2(12): 666-673. doi: 10.1038/nchembio841

67. Magarvey NA, Keller JM, Bernan V, Dworkin M, Sherman DH. Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Applied and environmental microbiology. 2004;70(12):7520-9.

68. Lam KS. Discovery of novel metabolites from marine actinomycetes. Current opinion in microbiology. 2006 Jun 1;9(3):245-51.

69. Prudhomme J, McDaniel E, Ponts N, et al. Marine Actinomycetes: A New Source of Compounds against the Human Malaria Parasite. PLoS ONE. 2008; 3(6): e2335. doi: 10.1371/journal.pone.0002335

70. Olano C, Méndez C, Salas JA. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Natural Product Reports. 2010; 27(4): 571. doi: 10.1039/b911956f

71. Rahman H, Austin B, Mitchell WJ, et al. Novel Anti-Infective Compounds from Marine Bacteria. Marine Drugs. 2010; 8(3): 498-518. doi: 10.3390/md8030498

72. Dutta PK, Ravikumar MNV, Dutta J. Chitin and chitosan for versatile applications. Journal of Macromolecular Science, Part C: Polymer Reviews. 2002; 42(3): 307-354. doi: 10.1081/mc-120006451

73. Crestini C, Kovac B, Giovannozzi-Sermanni G. Production and isolation of chitosan by submerged and solid-state fermentation from Lentinus edodes. Biotechnology and Bioengineering. 1996; 50(2): 207-210. doi: 10.1002/bit.260500202

74. Honarvar Z, Farhoodi M, Khani MR, et al. Application of cold plasma to develop carboxymethyl cellulose-coated polypropylene films containing essential oil. Carbohydrate Polymers. 2017; 176: 1-10. doi: 10.1016/j.carbpol.2017.08.054

75. George S, Xia T, Rallo R, et al. Use of a High-Throughput Screening Approach Coupled with In Vivo Zebrafish Embryo Screening to Develop Hazard Ranking for Engineered Nanomaterials. ACS Nano. 2011; 5(3): 1805-1817. doi: 10.1021/nn102734s

76. Yokoi H, Mori S, Hirose J, et al. H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M [h] 19. Biotechnology letters. 1998; 20: 895-899.

77. Maldonado LA, Fenical W, Jensen PR, Kauffman CA, Mincer TJ, Ward AC, Bull AT, Goodfellow M. Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. International journal of systematic and evolutionary microbiology. 2005; 55(5): 1759-66.

78. Hodgetts T, Lorimer J. Methodologies for animals’ geographies: cultures, communication and genomics. cultural geographies. 2014; 22(2): 285-295. doi: 10.1177/1474474014525114

79. Avise JC. Introductory overview–Stability, equilibrium and molecular aspects of conservation in marine species. Hydrobiologia. 2000;420(1): 11-12.

80. Handelsman J. Metagenomics: Application of Genomics to Uncultured Microorganisms. Microbiology and Molecular Biology Reviews. 2004; 68(4): 669-685. doi: 10.1128/mmbr.68.4.669-685.2004

81. Duster T. A post‐genomic surprise. The molecular reinscription of race in science, law and medicine. The British Journal of Sociology. 2015; 66(1): 1-27. doi: 10.1111/1468-4446.12118

82. Kahn J. Race in a bottle: The story of BiDil and racialized medicine in a post-genomic age. Columbia University Press; 2012. p. 1160.

83. Amer MS, Ibrahim HAH. Chitosan from marine-derived Penicillumspinulosum MH2 cell wall with special emphasis on its antimicrobial and antifouling properties. Egyptian Journal of Aquatic Research. 2019; 45(4): 359-365. doi: 10.1016/j.ejar.2019.11.007

84. Kumari S, Rath PK. Extraction and Characterization of Chitin and Chitosan from (Labeorohit) Fish Scales. Procedia Materials Science. 2014; 6: 482-489. doi: 10.1016/j.mspro.2014.07.062

85. Sathiyavimal S, Vasantharaj S, LewisOscar F, et al. Biosynthesis and characterization of hydroxyapatite and its composite (hydroxyapatite-gelatin-chitosan-fibrin-bone ash) for bone tissue engineering applications. International Journal of Biological Macromolecules. 2019; 129: 844-852. doi: 10.1016/j.ijbiomac.2019.02.058

86. Shanmuganathan R, Edison TNJI, LewisOscar F, et al. Chitosan nanopolymers: An overview of drug delivery against cancer. International Journal of Biological Macromolecules. 2019; 130: 727-736. doi: 10.1016/j.ijbiomac.2019.02.060

87. Shanmuganathan R, Karuppusamy I, Saravanan M, et al. Synthesis of Silver Nanoparticles and their Biomedical Applications - A Comprehensive Review. Current Pharmaceutical Design. 2019; 25(24): 2650-2660. doi: 10.2174/1381612825666190708185506

88. Goy RC, Morais STB, Assis OBG. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira de Farmacognosia. 2016; 26(1): 122-127. doi: 10.1016/j.bjp.2015.09.010

89. Gaikwad UV, Pande SA. A review of biopolymer chitosan blends in polymer system. Int. Res. J. Sci. Eng. 2013; 1: 13-16.

90. Nguyen DHH, Nguyen HVH. Effects of nano-chitosan and chitosan coating on the quality, polyphenol oxidase activity, malondialdehyde content of strawberry (Fragaria x ananassa Duch.) Journal of Horticulture and Postharvest Research. 2020; 3(1): 11-24.

91. Fahiminia M, Rahmanifar B, Koohpaei A, Dehaghi SM. The NanoChitosan thin film: a new portable support for immobilization of Acid phosphatase. International Journal of Advanced Biotechnology and Research. 2016; 7(4): 1650-1660.

92. Kumar K, Gupta SC, Baidoo SK, et al. Antibiotic Uptake by Plants from Soil Fertilized with Animal Manure. Journal of Environmental Quality. 2005; 34(6): 2082-2085. doi: 10.2134/jeq2005.0026

93. Qureshi A, Singh DK, Dwivedi S. Nano-fertilizers: A Novel Way for Enhancing Nutrient Use Efficiency and Crop Productivity. International Journal of Current Microbiology and Applied Sciences. 2018; 7(2): 3325-3335. doi: 10.20546/ijcmas.2018.702.398

94. Iwu CD, Kayode AJ, Igere BE, et al. High Levels of Multi Drug Resistant Escherichia coli Pathovars in Preharvest Environmental Samples: A Ticking Time Bomb for Fresh Produce Related Disease Outbreak. Frontiers in Environmental Science. 2022; 10. doi: 10.3389/fenvs.2022.858964

95. Igere BE, Nwodo UU. Genetic characterization of non-O1/non-O139 Vibrio cholerae mobilome: a strategy for understanding and discriminating emerging environmental bacterial strains. Journal of Biological Research - Bollettino dellaSocietàItaliana di BiologiaSperimentale. 2023. doi: 10.4081/jbr.2023.11202

96. Maikalu RB, Igere BE, Odjadjare EE. Enterobacter species distribution, emerging virulence and multiple antibiotic resistance dynamics in effluents: A countrified spread-hub and implications of abattior release. Total Environment Research Themes. 2023; 8: 100074.

97. Igere BE, Adeola MO. Fighting Biofilm Bearing Microbes, Global Challenges, Initiatives, and Current Novel Therapeutics/Antibiofilm Strategies: A Narrative Scientific Record. Medinformatics. 2024.

98. Igere BE, Igolukumo BB, Eduamodu C, Odjadjare EO. Multi-drug resistant Aeromonas species in Annelida: An evidence of pathogen harbouring leech in recreation water nexus of Oghara Nigeria environs. Scientia Africana. 2021; 20(2): 145-66.

99. Del Valle TA, Paiva PG de, Ferreira de Jesus E, et al. Dietary chitosan improves nitrogen use and feed conversion in diets for mid-lactation dairy cows. Livestock Science. 2017; 201: 22-29. doi: 10.1016/j.livsci.2017.04.003

100. Şenel S, McClure SJ. Potential applications of chitosan in veterinary medicine. Advanced Drug Delivery Reviews. 2004; 56(10): 1467-1480. doi: 10.1016/j.addr.2004.02.007

101. Varshosaz J. The promise of chitosan microspheres in drug delivery systems. Expert Opinion on Drug Delivery. 2007; 4(3): 263-273. doi: 10.1517/17425247.4.3.263

102. Shi C, Zhu Y, Ran X, et al. Therapeutic Potential of Chitosan and Its Derivatives in Regenerative Medicine. Journal of Surgical Research. 2006; 133(2): 185-192. doi: 10.1016/j.jss.2005.12.013

103. Wang LH, Wu GL, Cheng YY. Applications of chitosan and its derivatives in pharmaceutical industry of Chinese medicine. Zhongguo Zhong Yao Za Zhi. 2004; 29(4):289-292.

104. Hirano S, Itakura C, Seino H, et al. Chitosan as an ingredient for domestic animal feeds. Journal of Agricultural and Food Chemistry. 1990; 38(5): 1214-1217. doi: 10.1021/jf00095a012

105. Szatmári V. Chitosan hemostatic dressing for control of hemorrhage from femoral arterial puncture site in dogs. Journal of Veterinary Science. 2015; 16(4): 517. doi: 10.4142/jvs.2015.16.4.517

106. Hirano S, Tanaka Y, Hasegawa M, et al. Effect of sulfated derivatives of chitosan on some blood coagulant factors. Carbohydrate Research. 1985; 137: 205–215

107. Qiu Y, Zhang N, Kang Q, et al. Fabrication of permeable tubular constructs from chemically modified chitosan with enhanced antithrombogenic property. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2009; 90B(2): 668-678. doi: 10.1002/jbm.b.31333

108. Elieh-Ali-Komi D, Hamblin MR. Chitin and chitosan: production and application of versatile biomedical nanomaterials. International Journal of Advanced Research. 2016;4(3): 411.

109. Gudjónsdóttir M, Gacutan MD, Mendes AC, et al. Effects of electrospun chitosan wrapping for dry-ageing of beef, as studied by microbiological, physicochemical and low-field nuclear magnetic resonance analysis. Food Chemistry. 2015; 184: 167-175. doi: 10.1016/j.foodchem.2015.03.088

110. Cheung R, Ng T, Wong J, et al. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications. Marine Drugs. 2015; 13(8): 5156-5186. doi: 10.3390/md13085156

111. Hidangmayum A, Dwivedi P, Katiyar D, et al. Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants. 2019; 25(2): 313-326. doi: 10.1007/s12298-018-0633-1

112. Yu JY, Ko JA, Park HJ, Kim HW. Application of nanochitosan in food industry: a review. Food Science and Industry. 2020; 53(1): 56-68.

113. Dadvar AA, Vahidi J, Hajizadeh Z, et al. Experimental study on classical and metaheuristics algorithms for optimal nano-chitosan concentration selection in surface coating and food packaging. Food Chemistry. 2021; 335: 127681. doi: 10.1016/j.foodchem.2020.127681

114. Belmonte GK, Charles G, Strumia MC, et al. Permanent hydrophilic modification of polypropylene and poly(vinyl alcohol) films by vacuum ultraviolet radiation. Applied Surface Science. 2016; 382: 93-100. doi: 10.1016/j.apsusc.2016.04.091

115. Rezaei A, Fathi M, Jafari SM. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids. 2019; 88: 146-162. doi: 10.1016/j.foodhyd.2018.10.003

116. Alves P, Cardoso R, Correia TR, et al. Surface modification of polyurethane films by plasma and ultraviolet light to improve haemocompatibility for artificial heart valves. Colloids and Surfaces B: Biointerfaces. 2014; 113: 25-32. doi: 10.1016/j.colsurfb.2013.08.039

117. Dai L, Xu D. Polyethylene surface enhancement by corona and chemical co-treatment. Tetrahedron Letters. 2019; 60(14): 1005-1010. doi: 10.1016/j.tetlet.2019.03.013

118. Romani VP, Olsen B, Pinto Collares M, et al. Plasma technology as a tool to decrease the sensitivity to water of fish protein films for food packaging. Food Hydrocolloids. 2019; 94: 210-216. doi: 10.1016/j.foodhyd.2019.03.021

119. Wang X, Liu Z, Huang L. pH and thermo dual-responsive starch-g-P(DEAEMA-co-PEGMA): Synthesis via SET-LRP, self-assembly and drug release behaviors. Reactive and Functional Polymers. 2019; 141: 165-171. doi: 10.1016/j.reactfunctpolym.2019.05.011

120. Zhu Y. Influence of corona discharge on hydrophobicity of silicone rubber used for outdoor insulation. Polymer Testing. 2019; 74: 14-20. doi: 10.1016/j.polymertesting.2018.12.011

121. Cardoso ECL, Scagliusi SR, Lima LFCP, et al. Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation. Radiation Physics and Chemistry. 2014; 94: 249-252. doi: 10.1016/j.radphyschem.2013.07.017

122. Zhou B, Jiang X, Zhou X, et al. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances. Biomaterials research. 2023; 27(1): 86.

123. Skropeta D. Deep-sea natural products. Natural Product Reports. 2008; 25(6): 1131. doi: 10.1039/b808743a

Downloads

Published

06/27/2025

Issue

Section

Article

How to Cite

Re-emphasizing the diversity and relevance of chitosan-nano-types derived from marine-actinomycetes; a biotechnological and industrialization blueprint. (2025). Progress in Environmental Chemistry, 1(1), 60. https://doi.org/10.65746/pec60