PM10 Hg aerosols and their variations due to emission sources and meteorological factors at three sites in Delhi city (India)
DOI:
https://doi.org/10.65746/pec62Keywords:
atmospheric mercury; voltammetry; particulate mercury; air pollution; meteorological parametersAbstract
Mercury air pollution is significantly harmful to human health. The first-ever detailed measurements of respirable-sized HgP levels were carried out at three sites in New Delhi in this study. The samples were collected at i) Jawaharlal Nehru University (JNU) (urban background site) and ii) Okhla (urban industrial cum residential site) during 2014–15, and iii) Badarpur (thermal power plant site) during January and February 2017, on quartz filters by using a high-volume air sampler. The mercury determination was carried out by using a VA computrace metal analyzer in differential pulse Anodic Stripping Voltammetry mode. The HgP levels varied from 0.24 to 1.43 ng m−3 with a mean of 0.74 ± 0.35 ng m−3 at JNU during the entire study period. At the Okhla site, the HgP levels varied from 0.19 to 7.36 ng m−3 with a mean of 1.40 ± 1.46 ng m−3, while the HgP levels varied from 0.30 to 4.03 ng m−3 with a mean of 1.81 ± 0.96 ng m−3 at Badarpur during the winter season. HgP levels had significant spatio-temporal variations. The higher average concentrations of respirable HgP were observed during the winter season at all the sites as compared to the summer and monsoon seasons. Wind and pollution roses showed that the sampling sites were affected by local, regional, and transboundary pollution sources. Findings of this study will serve as an important reference for future assessment of atmospheric particulate mercury pollution in the Delhi National Capital Region. Anthropogenic HgP in the capital city of India still needs further long-term monitoring programs because of growing urbanization and industrialization.
References
1. Basu N, Bastiansz A, Dórea JG, et al. Our evolved understanding of the human health risks of mercury. Ambio. 2023; 52(5): 877-896. doi: 10.1007/s13280-023-01831-6
2. Weiss-Penzias PS, Bank MS, Clifford DL, et al. Marine fog inputs appear to increase methylmercury bioaccumulation in a coastal terrestrial food web. Scientific Reports. 2019; 9(1). doi: 10.1038/s41598-019-54056-7
3. López-Berenguer G, Peñalver J, Martínez-López E. A critical review about neurotoxic effects in marine mammals of mercury and other trace elements. Chemosphere. 2020; 246: 125688. doi: 10.1016/j.chemosphere.2019.125688
4. Obrist D, Kirk JL, Zhang L, et al. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio. 2018; 47(2): 116-140. doi: 10.1007/s13280-017-1004-9
5. Li ML, Kwon SY, Poulin BA, et al. Internal Dynamics and Metabolism of Mercury in Biota: A Review of Insights from Mercury Stable Isotopes. Environmental Science & Technology. 2022; 56(13): 9182-9195. doi: 10.1021/acs.est.1c08631
6. Schiavo B, Morton-Bermea O, Salgado-Martínez E, et al. Health risk assessment of gaseous elemental mercury (GEM) in Mexico City. Environmental Monitoring and Assessment. 2022; 194(7). doi: 10.1007/s10661-022-10107-7
7. Padalkar PP, Chakraborty P, Chatterjee S, et al. Mercury speciation in a complex tropical estuarine system: Understanding natural and anthropogenic influences. Regional Studies in Marine Science. 2025; 82: 104000. doi: 10.1016/j.rsma.2024.104000
8. Pacyna JM, Travnikov O, De Simone F, et al. Current and future levels of mercury atmospheric pollution on a global scale. Atmospheric Chemistry and Physics. 2016; 16(19): 12495-12511. doi: 10.5194/acp-16-12495-2016
9. Lin CJ, Pehkonen SO. The chemistry of atmospheric mercury: a review. Atmospheric Environment. 1999; 33(98): 2067-2079.
10. Schroeder WH, Munthe J. Atmospheric mercury - an overview. Atmospheric Environment. 1998; 32(5): 809–822.
11. Shannon JD, Voldner EC. Modeling atmospheric concentrations of mercury and deposition to the Great Lakes. Atmospheric Environment. 1995; 29: 1649–1661.
12. Moore CW, Obrist D, Luria M. Atmospheric mercury depletion events at the Dead Sea: Spatial and temporal aspects. Atmospheric Environment. 2013; 69: 231-239. doi: 10.1016/j.atmosenv.2012.12.020
13. Fang F, Wang Q, Li J. Atmospheric particulate mercury concentration and its dry deposition flux in Changchun City, China. Science of The Total Environment. 2001; 281: 229–236.
14. Lu J, Schroeder W. Sampling and determination of particulate mercury in ambient air: a review. Water, Air, & Soil Pollution. 1999; 112: 279–295.
15. Schleicher NJ, Schäfer J, Blanc G, et al. Atmospheric particulate mercury in the megacity Beijing: Spatio-temporal variations and source apportionment. Atmospheric Environment. 2015; 109: 251-261. doi: 10.1016/j.atmosenv.2015.03.018
16. Mohan M, Bhati S, Gunwani P, et al. Emission Inventory of Air Pollutants and Trend Analysis Based on Various Regulatory Measures Over Megacity Delhi. Air Quality - New Perspective. Published online July 26, 2012. doi: 10.5772/45874
17. Garg A, Shukla PR, Kapshe M. The sectoral trends of multigas emissions inventory of India. Atmospheric Environment. 2006; 40(24): 4608-4620. doi: 10.1016/j.atmosenv.2006.03.045
18. Karunasagar D, Balarama Krishna MV, Anjaneyulu Y, et al. Studies of mercury pollution in a lake due to a thermometer factory situated in a tourist resort: Kodaikkanal, India. Environmental Pollution. 2006; 143(1): 153-158. doi: 10.1016/j.envpol.2005.10.032
19. Balarama Krishna MV, Karunasagar D, Arunachalam J. Study of mercury pollution near a thermometer factory using lichens and mosses. Environmental Pollution. 2003; 124(3): 357-360.
20. Jayasekher T. Aerosols near by a coal fired thermal power plant: Chemical composition and toxic evaluation. Chemosphere. 2009; 75(11): 1525-1530. doi: 10.1016/j.chemosphere.2009.02.001
21. Pervez S, Koshle A, Pervez Y. Study of spatiotemporal variation of atmospheric mercury and its human exposure around an integrated steel plant, India. Atmospheric Chemistry and Physics. 2010; 10(12): 5535-5549. doi: 10.5194/acp-10-5535-2010
22. Kumari A, Kumar B, Manzoor S, et al. Status of Atmospheric Mercury Research in South Asia: A Review. Aerosol and Air Quality Research. 2015; 15(3): 1092-1109. doi: 10.4209/aaqr.2014.05.0098
23. Morton-Bermea O, Garza-Galindo R, Hernández-Álvarez E, et al. Atmospheric PM2.5 Mercury in the Metropolitan Area of Mexico City. Bulletin of Environmental Contamination and Toxicology. 2018; 100(4): 588-592. doi: 10.1007/s00128-018-2288-6
24. Kumari A, Kulshrestha U. Trace ambient levels of particulate mercury and its sources at a rural site near Delhi. Journal of Atmospheric Chemistry. 2018; 75(4): 335-355. doi: 10.1007/s10874-018-9377-0
25. Li Y, Wang Y, Li Y, et al. Characteristics and potential sources of atmospheric particulate mercury in Jinan, China. Science of The Total Environment. 2017; 574: 1424-1431. doi: 10.1016/j.scitotenv.2016.08.069
26. Kulshrestha UC, Nageswara Rao T, Azhaguvel S, et al. Emissions and accumulation of metals in the atmosphere due to crackers and sparkles during Diwali festival in India. Atmospheric Environment. 2004; 38(27): 4421-4425. doi: 10.1016/j.atmosenv.2004.05.044
27. Bonfil Y, Brand M, Kirowa-Eisner E. Trace determination of mercury by Anodic Stripping Voltammetry at the rotating gold electrode. Analytica Chimica Acta. 2000; 424(1): 65-76.
28. Nguyen TTK, Luu HT, Vu LD, et al. Determination of Total Mercury in Solid Samples by Anodic Stripping Voltammetry. Singh AK, ed. Journal of Chemistry. 2021; 2021: 1-8. doi: 10.1155/2021/8888879
29. Planková A, Jampílek J, Švorc Ľ, et al. Anodic Stripping Voltammetry: affordable and reliable alternative to inductively coupled plasma-based analytical methods. Monatshefte für Chemie - Chemical Monthly. 2018; 149(5): 913-920. doi: 10.1007/s00706-017-2138-y
30. Farghaly OA, Ghandour MA. Square-wave stripping voltammetry for direct determination of eight heavy metals in soil and indoor-airborne particulate matter. Environmental Research. 2005; 97(3): 229-235. doi: 10.1016/j.envres.2004.07.007
31. Nedeltcheva T, Atanassova M, Dimitrov J, et al. Determination of mobile form contents of Zn, Cd, Pb and Cu in soil extracts by combined stripping voltammetry. Analytica Chimica Acta. 2005; 528(2): 143-146. doi: 10.1016/j.aca.2004.10.036
32. Harikumar PS, Dhruvan A, Sabna V, Babitha A. Study on the leaching of mercury from compact fluorescent lamps using stripping voltammetry. Journal of Toxicology and Environmental Health Sciences. 2011; 3(1): 008-013.
33. Arora A, Kumari A, Kulshrestha U. Respirable Mercury Particulates and Other Chemical Constituents in Festival Aerosols in Delhi. Current World Environment. 2018; 13(1): 03-14. doi: 10.12944/cwe.13.1.02
34. Metrohm. Determination of mercury at the rotating gold electrode by Anodic Stripping Voltammetry. Available online: https://www.metrohm.com/content/dam/metrohm/shared/documents/application-bulletins/AB-096_5.pdf (accessed on 23 July 2018).
35. Fu X, Liu C, Zhang H, et al. Isotopic compositions of atmospheric total gaseous mercury in 10 Chinese cities and implications for land surface emissions. Atmospheric Chemistry and Physics. 2021; 21(9): 6721-6734. doi: 10.5194/acp-21-6721-2021
36. Sakata M, Marumoto K. Formation of atmospheric particulate mercury in the Tokyo metropolitan area. Atmospheric Environment. 2002; 36: 239–246.
37. Gabriel MC, Williamson DG, Brooks S. Lindberg S. Atmospheric speciation of mercury in two contrasting Southeastern US airsheds. Atmospheric Environment. 2005; 39(27): 4947-4958. doi: 10.1016/j.atmosenv.2005.05.003
38. Rutter AP, Schauer JJ. The effect of temperature on the gas–particle partitioning of reactive mercury in atmospheric aerosols. Atmospheric Environment. 2007; 41(38): 8647-8657. doi: 10.1016/j.atmosenv.2007.07.024
39. Gaspar JA, Widmer NC, Cole JA, Seeker WR. Study of mercury speciation in a simulated municipal waste incinerator flue gas. In: Proceedings of the International Conference on Incineration and Thermal Treatment Technologies; 12-16 May 1997; San Francisco, CA, USA.
40. Chambers A, Knecht M, Soelberg N, et al. Mercury Emissions Control Technologies for Mixed Waste Thermal Treatment. In: Proceedings of the International Conference on Incineration and Thermal Treatment Technologies; 11-15 May 1998; Salt Lake City, Utah, USA.
41. Huang J, Kang S, Guo J, et al. Atmospheric particulate mercury in Lhasa city, Tibetan Plateau. Atmospheric Environment. 2016; 142: 433-441. doi: 10.1016/j.atmosenv.2016.08.021
42. Guo J, Kang S, Huang J, et al. Characterizations of atmospheric particulate-bound mercury in the Kathmandu Valley of Nepal, South Asia. Science of The Total Environment. 2017; 579: 1240-1248. doi: 10.1016/j.scitotenv.2016.11.110
43. Guttikunda SK, Goel R. Health impacts of particulate pollution in a megacity—Delhi, India. Environmental Development. 2013; 6: 8-20. doi: 10.1016/j.envdev.2012.12.002
44. Fang F, Wang Q, Li J. Urban environmental mercury in Changchun, a metropolitan city in Northeastern China: source, cycle, and fate. Science of The Total Environment. 2004; 330(1-3): 159-170. doi: 10.1016/j.scitotenv.2004.04.006
45. Zhang F, Xu L, Chen J, et al. Chemical compositions and extinction coefficients of PM2.5 in peri-urban of Xiamen, China, during June 2009–May 2010. Atmospheric Research. 2012; 106: 150-158. doi: 10.1016/j.atmosres.2011.12.005
46. Jayasekhar T, Kumaresan S, Radhika SL, et al. Statistical Analysis of the Aerosol Elemental Composition in an Industrial Belt. Bulletin of Environmental Contamination and Toxicology. 2004; 73(1). doi: 10.1007/s00128-004-0392-2
47. Guo J, Tripathee L, Kang S, et al. Atmospheric particle-bound mercury in the northern Indo-Gangetic Plain region: Insights into sources from mercury isotope analysis and influencing factors. Geoscience Frontiers. 2022; 13(1): 101274. doi: 10.1016/j.gsf.2021.101274
48. Xiu G, Cai J, Zhang W, et al. Speciated mercury in size-fractionated particles in Shanghai ambient air. Atmospheric Environment. 2009; 43(19): 3145-3154. doi: 10.1016/j.atmosenv.2008.07.044
49. Wang Z, Zhang X, Chen Z, et al. Mercury concentrations in size-fractionated airborne particles at urban and suburban sites in Beijing, China. Atmospheric Environment. 2006; 40(12): 2194-2201. doi: 10.1016/j.atmosenv.2005.12.003
50. Lin H, Tong Y, Yu C, et al. First observation of mercury species on an important water vapor channel in the southeastern Tibetan Plateau. Atmospheric Chemistry and Physics. 2022; 22(4): 2651-2668. doi: 10.5194/acp-22-2651-2022
51. Hu Q, Kang H, Li Z, et al. Characterization of atmospheric mercury at a suburban site of central China from wintertime to springtime. Atmospheric Pollution Research. 2014; 5(4): 769-778. doi: 10.5094/apr.2014.086
52. Xu L, Chen J, Yang L, et al. Characteristics and sources of atmospheric mercury speciation in a coastal city, Xiamen, China. Chemosphere. 2015; 119: 530-539. doi: 10.1016/j.chemosphere.2014.07.024
53. Lin H, Tong Y, Chen L, et al. Unexpectedly high concentrations of atmospheric mercury species in Lhasa, the largest city in the Tibetan Plateau. Atmospheric Chemistry and Physics. 2023; 23(7): 3937-3953. doi: 10.5194/acp-23-3937-2023
54. Zhu J, Wang T, Talbot R, et al. Characteristics of atmospheric mercury deposition and size-fractionated particulate mercury in urban Nanjing, China. Atmospheric Chemistry and Physics. 2014; 14(5): 2233-2244. doi: 10.5194/acp-14-2233-2014
55. Duan L, Cheng N, Xiu G, et al. Characteristics and source appointment of atmospheric particulate mercury over East China Sea: Implication on the deposition of atmospheric particulate mercury in marine environment. Environmental Pollution. 2017; 224: 26-34. doi: 10.1016/j.envpol.2016.10.103
56. Kim SH, Han YJ, Holsen TM, et al. Characteristics of atmospheric speciated mercury concentrations (TGM, Hg(II) and Hg(p)) in Seoul, Korea. Atmospheric Environment. 2009; 43(20): 3267-3274. doi: 10.1016/j.atmosenv.2009.02.038
57. Kim PR, Han YJ, Holsen TM, et al. Atmospheric particulate mercury: Concentrations and size distributions. Atmospheric Environment. 2012; 61: 94-102. doi: 10.1016/j.atmosenv.2012.07.014
58. Nguyen DL, Kim JY, Shim SG, et al. Shipboard and ground measurements of atmospheric particulate mercury and total mercury in precipitation over the Yellow Sea region. Environmental Pollution. 2016; 219: 262-274. doi: 10.1016/j.envpol.2016.10.020
59. Han YJ, Kim JE, Kim PR, et al. General trends of atmospheric mercury concentrations in urban and rural areas in Korea and characteristics of high-concentration events. Atmospheric Environment. 2014; 94: 754-764. doi: 10.1016/j.atmosenv.2014.06.002
60. Chand D, Jaffe D, Prestbo E, et al. Reactive and particulate mercury in the Asian marine boundary layer. Atmospheric Environment. 2008; 42(34): 7988-7996. doi: 10.1016/j.atmosenv.2008.06.048
61. Pyta H, Rosik-Dulewska C, Czaplicka M. Speciation of Ambient Mercury in the Upper Silesia Region, Poland. Water, Air, and Soil Pollution. 2008; 197(1-4): 233-240. doi: 10.1007/s11270-008-9806-9
62. Pyta H, Rogula-Kozłowska W. Determination of mercury in size-segregated ambient particulate matter using CVAAS. Microchemical Journal. 2016; 124: 76-81. doi: 10.1016/j.microc.2015.08.001
63. Zielonka U, Hlawiczka S, Fudala J, et al. Seasonal mercury concentrations measured in rural air in Southern PolandContribution from local and regional coal combustion. Atmospheric Environment. 2005; 39(39): 7580-7586. doi: 10.1016/j.atmosenv.2005.08.003
64. Li J, Sommar J, Wangberg I, et al. Short-time variation of mercury speciation in the urban of Göteborg during GÖTE-2005. Atmospheric Environment. 2008; 42(36): 8382-8388. doi: 10.1016/j.atmosenv.2008.08.007
65. Weigelt A, Temme C, Bieber E, et al. Measurements of atmospheric mercury species at a German rural background site from 2009 to 2011 – methods and results. Environmental Chemistry. 2013; 10(2): 102. doi: 10.1071/en12107
66. Cheng I, Zhang L, Blanchard P, et al. Concentration-weighted trajectory approach to identifying potential sources of speciated atmospheric mercury at an urban coastal site in Nova Scotia, Canada. Atmospheric Chemistry and Physics. 2013; 13(12): 6031-6048. doi: 10.5194/acp-13-6031-2013
67. Song X, Cheng I, Lu J. Annual atmospheric mercury species in Downtown Toronto, Canada. Journal of Environmental Monitoring. 2009; 11(3): 660. doi: 10.1039/b815435j
68. Rutter AP, Snyder DC, Stone EA, et al. In situ measurements of speciated atmospheric mercury and the identification of source regions in the Mexico City Metropolitan Area. Atmospheric Chemistry and Physics. 2009; 9(1): 207-220. doi: 10.5194/acp-9-207-2009
69. Jiang Y, Cizdziel JV, Lu D. Temporal patterns of atmospheric mercury species in northern Mississippi during 2011–2012: Influence of sudden population swings. Chemosphere. 2013; 93(9): 1694-1700. doi: 10.1016/j.chemosphere.2013.05.039
70. Gratz LE, Keeler GJ, Marsik FJ, et al. Atmospheric transport of speciated mercury across southern Lake Michigan: Influence from emission sources in the Chicago/Gary urban area. Science of The Total Environment. 2013; 448: 84-95. doi: 10.1016/j.scitotenv.2012.08.076
71. Liu B, Keeler GJ, Timothy Dvonch J, et al. Urban-rural differences in atmospheric mercury speciation. Atmospheric Environment. 2010; 44(16): 2013-2023. doi: 10.1016/j.atmosenv.2010.02.012
72. Mao H, Talbot R. Speciated mercury at marine, coastal, and inland sites in New England – Part 1: Temporal variability. Atmospheric Chemistry and Physics. 2012; 12(11): 5099-5112. doi: 10.5194/acp-12-5099-2012
73. Manolopoulos H, Snyder DC, Schauer JJ, et al. Sources of Speciated Atmospheric Mercury at a Residential Neighborhood Impacted by Industrial Sources. Environmental Science & Technology. 2007; 41(16): 5626-5633. doi: 10.1021/es0700348
74. Choi HD, Huang J, Mondal S, et al. Variation in concentrations of three mercury (Hg) forms at a rural and a suburban site in New York State. Science of The Total Environment. 2013; 448: 96-106. doi: 10.1016/j.scitotenv.2012.08.052
75. Fostier AH, Michelazzo PAM. Gaseous and particulate atmospheric mercury concentrations in the Campinas Metropolitan Region (São Paulo State, Brazil). Journal of the Brazilian Chemical Society. 2006; 17(5): 886-894. doi: 10.1590/s0103-50532006000500011
76. Karuppasamy MB, Seshachalam S, Natesan U, Ramasamy K. Characterization of Atmospheric Mercury in the High-Altitude Background Station and Coastal Urban City in South Asia. In: Environmental Sustainability - Preparing for Tomorrow. IntechOpen; 2021.
77. Guo J, Ram K, Tripathee L, et al. Study on Mercury in PM10 at an Urban Site in the Central Indo-Gangetic Plain: Seasonal Variability and Influencing Factors. Aerosol and Air Quality Research. 2020; 20(12): 2729-2740. doi: 10.4209/aaqr.2019.12.0630
78. Koshle A, Pervez YF, Tiwari RP, Pervez S. Environmental pathways and distribution pattern of total mercury among soils and groundwater matrices around an integrated steel plant in India. Journal of Scientific & Industrial Research. 2008; 67: 523-530.
79. Supriti P, Mustala S, Asif Q. Mercury in soil around a 2,600 MW coal-fired super thermal power plant in India and Human Health Risk Assessment. Journal of Hazardous, Toxic, and Radioactive Waste. 2021; 25(3): 5021005.
80. Bhave P, Sadhwani K, Dhadwad M. Total mercury in soil and leachate from municipal solid waste dumping grounds in Mumbai, India. Environmental Earth Sciences. 2022; 81(1). doi: 10.1007/s12665-021-10156-0
81. Xiu GL, Jin Q, Zhang D, et al. Characterization of size-fractionated particulate mercury in Shanghai ambient air. Atmospheric Environment. 2005; 39(3): 419-427. doi: 10.1016/j.atmosenv.2004.09.046
82. Nguyen LSP, Sheu GR, Chang SC, et al. Effects of temperature and relative humidity on the partitioning of atmospheric oxidized mercury at a high-altitude mountain background site in Taiwan. Atmospheric Environment. 2021; 261: 118572. doi: 10.1016/j.atmosenv.2021.118572
83. Pankow JF. A simple box model for the annual cycle of partitioning of semi volatile organic compounds between the atmosphere and the earth's surface. Atmospheric Environment. 1993; 27: 1139-1152.
84. Lin CJ, Pehkonen SO. Two-phase model of mercury chemistry in the atmosphere. Atmospheric Environment. 1998; 32: 2543–2558.
85. Lin CJ, Pehkonen SO. Aqueous phase reactions of mercury with free radicals and chlorine: implications for atmospheric mercury chemistry. Chemosphere. 1999; 38: 1253–1263.
86. Subir M, Ariya PA, Dastoor AP. A review of uncertainties in atmospheric modeling of mercury chemistry I. Uncertainties in existing kinetic parameters – Fundamental limitations and the importance of heterogeneous chemistry. Atmospheric Environment. 2011; 45(32): 5664-5676. doi: 10.1016/j.atmosenv.2011.04.046
87. Zhang Y, Liu R, Wang Y, et al. Change characteristic of atmospheric particulate mercury during dust weather of spring in Qingdao, China. Atmospheric Environment. 2015; 102: 376-383. doi: 10.1016/j.atmosenv.2014.12.005
88. Kulshrestha UC, Reddy LAK, Satyanarayana J, et al. Real-time wet scavenging of major chemical constituents of aerosols and role of rain intensity in Indian region. Atmospheric Environment. 2009; 43(32): 5123-5127. doi: 10.1016/j.atmosenv.2009.07.025
89. Kulshrestha UC, Kumar N, Saxena A, et al. Identification of the nature and source of atmospheric aerosols near the Taj Mahal (India). Environmental Monitoring and Assessment. 1995; 34(1): 1-11. doi: 10.1007/bf00546242
90. Belis CA, Karagulian F, Larsen BR, et al. Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmospheric Environment. 2013; 69: 94-108. doi: 10.1016/j.atmosenv.2012.11.009
91. Kulshrestha UC, Jain M, Sekar R, et al. Chemical characteristics and source apportionment of aerosols over Indian Ocean during INDOEX-1999. Current Science. 2001; 80 (10): 180-185.
92. Friedli HR, Radke LF, Lu JY, et al. Mercury emissions from burning of biomass from temperate North American forests: laboratory and airborne measurements. Atmospheric Environment. 2003; 37(2): 253–267.
93. Landis MS, Lewis CW, Stevens RK, et al. Ft. McHenry tunnel study: Source profiles and mercury emissions from diesel and gasoline powered vehicles. Atmospheric Environment. 2007; 41(38): 8711-8724. doi: 10.1016/j.atmosenv.2007.07.028
94. Mukherjee AB, Bhattacharya P, Sarkar A, Zevenhoven R. Mercury emissions from industrial sources in India and its effects in the environment. Springer, New York, USA; 2009. pp. 81–112.
95. Sharma SK, Mandal TK, Saxena M, et al. Variation of OC, EC, WSIC and trace metals of PM10 in Delhi, India. Journal of Atmospheric and Solar-Terrestrial Physics. 2014; 113: 10-22. doi: 10.1016/j.jastp.2014.02.008
96. Sharma SK, Mandal TK, Jain S, et al. Source Apportionment of PM2.5 in Delhi, India Using PMF Model. Bulletin of Environmental Contamination and Toxicology. 2016; 97(2): 286-293. doi: 10.1007/s00128-016-1836-1
97. Mishra M, Kulshrestha UC. Wet deposition of total dissolved nitrogen in Indo-Gangetic Plain (India). Environmental Science and Pollution Research. 2021; 29(6): 9282-9292. doi: 10.1007/s11356-021-16293-0
98. Rao MN, Latha R, Nikhil K, et al. Atmospheric gaseous mercury and associated health risk assessment in the economic capital of India. Environmental Monitoring and Assessment. 2024; 196(6). doi: 10.1007/s10661-024-12679-y
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Author(s)

This work is licensed under a Creative Commons Attribution 4.0 International License.

